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Potential scattering of Dirac particles 
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Abstract. In this paper we consider the Dirac equation with external electromagnetic fields 
and give a careful formulation of the Stiickelberg-Feynman interpretation (i.e. the negative 
energy waves are directly interpreted as positron solutions). This electron-positron theory 
may be applied whenever electron and positron states can be separated, which is possible for 
a wide class of time-independent potentials vanishing at infinity. One then may introduce a 
system of observables with a position operator X ( t )  which is free of Zitterbewegung and 
yields the usual relativistic connection between momentum and velocity. The Stuckelberg- 
Feynman interpretation is usually associated with a scattering theory (propagator formal- 
ism) which differs from the one of a one-particle interpretation (formalism imitating 
non-relativistic techniques). For the above-mentioned potentials there is a simple rela- 
tionship between these physically different formalisms. There are, however, more general 
potentials for which the Stuckelberg-Feynman interpretation may still be applied asymp- 
totically. With the help of Klein’s paradox we show that the Dirac equation may then have 
unphysical solutions not conserving the total charge (in that case a unitary Feynman 
scattering operator does not exist). 

1. Introduction 

In this paper we shall discuss the quantum mechanical interpretation of the Dirac 
equation (2.1) for particles in external electromagnetic potentials. We are interested in 
the following questions: what are the external fields for which the Dirac equation 
(treated as a quantum mechanical wave equation) yields reasonable results (such fields 
exist; remember the hydrogen atom), and what happens if one tries to calculate more 
general situations? Our main problem is that up to now no particular quantum 
mechanical interpretation is generally accepted. Throughout this paper we shall apply 
the Stuckelberg-Feynman interpretation (Stuckelberg 1942, Feynman 1949). It is 
intermediate between a one-particle theory and Dirac’s hole theory, because it claims 
that the Dirac equation is able to describe two kinds of particles, namely electrons and 
positrons (but not their interaction; negative energy states are directly observed as 
positrons with positive energy). Our theory is formulated in the language of wave- 
packets (i.e. in a Hilbert-space context) and does not rely on unobservable objects like 
the Dirac sea. 

In § 2 the separation of electron and positron states is carried through for a wide 
class of external fields (even if bound states appear with both signs of energy). These 
potentials, which are time independent and vanish at infinity, allow no transitions to 
states with different energy, and therefore it depends only on the initial conditions, 
whether the wavefunction describes an electron or a positron. This viewpoint has 
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interesting consequences. It is possible to define electron and positron observables by 
restricting the observables of one-particle theories to the electron and positron 
subspaces. One then obtains a position operator with non-commuting components 
whose commutator with the energy yields the usual relativistic connection between 
momentum and velocity z, = p / E  without ‘Zitterbewegung’. 

The Klein paradox (i.e. the scattering by very strong step-potentials; § 3) is an 
example of a more general situation, because the potential does not vanish at infinity. A 
separation of electrons and positrons is only possible for the asymptotic states. It turns 
out that there are transitions from electron to positron states, but that these solutions do 
not conserve total charge. (Because of time reversal invariance it is, however, possible 
to find charge conserving solutions for the scattering at static potential steps.) 

Finally, we turn to the general theory of potential scattering. The Stuckelberg- 
Feynman interpretation is basic to Feynman’s theory of potential scattering (Feynman 
1949), which is presented in every modern textbook as a simple application of the 
propagator formalism (cf Bjorken and Drel l l964 ch 6, Pilkuhn 1979, ch 2.6, Scadron 
1979, ch 7). Prosser (1963) developed for the first time a mathematically rigorous 
theory which originates in a one-particle interpretation (see also Eckhardt 1974, 
Pearson 1977, Bongaarts and Ruijsenaars 1977). This formalism ‘imitates’ non- 
relativistic time-dependent scattering theory by substituting Dirac for Schrodinger 
operators. In 0 4 it is our intention to give a rigorous Hilbert-space formulation of the 
heuristic Feynman theory and to compare it with the theory of Prosser. We obtained 
the following results. The two formalisms are mathematically equivalent for the 
potentials allowing a separation of electron and positron states. For more general 
situations like the Klein paradox, the two formalisms are no longer equivalent. It is 
possible to find a unitary scattering operator s’ in the sense of Prosser (cf Bongaarts and 
Rujsenaars 1976, 1977), but the existence of unphysical solutions prevents the 
definition of a unitary operator S in the sense of Feynman. The same difficulty arises 
with strongly time-dependent potentials: conservation of norm prevents any change in 
the number of particles, whereas traneitions from electron to positron states give rise to 
solutions that do not conserve total charge (i.e. s may exist and be unitary, but a unitary 
S cannot be found). We thus conclude that pair creation, which may actually happen for 
sufficiently high scattering or bound state energies, is not described by the Dirac 
equation without using explicitly quantum field theory. 

2. The quantum mechanical interpretation 

A one-particle interpretation of the Dirac wavefunction ( l 4 ( ~ ) 1 ~  =position probability 
density for electrons, e14(x)12 = charge density) leads to some well known difficulties. 

(1) A careful study of the expectation, value of X ( t )  reveals the phenomenon of 
‘Zitterbewegung’ resulting from an interference between the positive and negative 
energy part of the wavefunction. It has some peculiar properties: for plane waves, 
Zitterbewegung is a steady-state phenomenon, but it is transient for wavepackets (i.e. 
the oscillatory motion is damped, and asymptotically the wavepackets move according 
to Newton’s first law). For special initial conditions (e.g. only positive or negative 
energies) it is totally absent (cf Lock 1979, Barut and Bracken 1981). 

(2) Another drawback is the occurrence of bound states in repulsive potentials, The 
electron Dirac equation with a repulsive Coulomb potential Ze2 / r  gives bound states at 
-E,, if E, are the hydrogen energy levels (attractive Coulomb potential -Ze2 / r ) ;  cf 
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Brysk and Zweifel(1981), Messiah (1962). A square well may even draw energy levels 
beyond E = 0 (cf Rafelski et a1 1978). 

It is the purpose of this section to present another quantum mechanical inter- 
pretation which associates a position probability density with the wavefunctions, but 
which is free of Zitterbewegung and gives a simple explanation for the bound states in 
repulsive potentials. 

2.1. The Dirac equation 

The Dirac equation in Hamiltonian form reads 

(I, E 22(R3)4, t i = c = 1 ,  g c R ,  

H k )  = Ho + g v ,  Ho = -iyoy * V +-yam, V = -yo-ywA,. (2.1) 

a 
= H(g)(I,, 

(In the following we shall concentrate on the electron equation: g = e = -\el; the 
discussion is completely analogous for positrons g = -e. For the metric and notation of 
y matrices see Bjorken and Drell (1964).) 

In order to interpret the wavefunction we have to impose some conditions on the 
external potential. Let V be time independent. Assume H ( g )  to be self-adjoint and its 
eigenvalues continuous and strictly monotone in g (the eigenfunctions should also 
depend continuously on g ;  cf the definition (111) of 0 2.2). Furthermore assume the 
following decomposition of the spectrum: 

a m )  = a p ( W  U VaJH),  

aac(H) = (--CO, -ml U [m, a), 
(2.2) 

(The point spectrum a p ( H )  is the set of all eigenvalues of H, and aac(H) is the absolutely 
continuous spectrum of scattering energies.) These conditions are very restrictive: 
neglecting mathematical details (one has to exclude some pathological potentials), it is 
required that each component of the 4 x 4 matrix V ( x )  vanishes at infinity (e.g. like 
(l/lxl) and is less singular than the Coulomb potential with 2 = 137 in any finite region. 
We shall see in the next section what happens if only weaker conditions are imposed. 
(More details concerning mathematical problems can be found in the following 
references. A review of the self-adjointness problem is given e.g. in Jorgens (1973); for 
the absence of the singular-continuous spectrum see Weidmann (197 l ) ,  Weder (1973), 
Pearson (1977) and Simon (1979); a treatment including Coulomb forces can be found 
in Nenciu (1976), Wust (1977), Klaus and Wust (1979); see also Landgren and Reito 
(1979), Landgren et a1 (1980); the absence of eigenvalues embedded in the continuum 
is considered in Kalf (1976, 1980); the dependence of the point spectrum on g is 
investigated in Klaus (1980).) 

The Dirac equation is form invariant under PoincarC transformations; the 
requirement of time independence of the external potential destroys, however, the 
covariance of the theory, because it gives preference to a special Lorentz frame. It 
would be very difficult to admit time-dependent potentials, because then the decom- 
position of the Hilbert space generally would be impossible. 

a,(H) c [-m, + m l .  

2.2. Decomposition of the Hilbert space 

We consider first the simpler problem of interpreting scattering states. According to 



3070 B Thaller 

(2.2) any scattering wavefunction I) E % J H )  can be written uniquely as $ = $++ $-, 
where the positive and negative energy parts are orthogonal (i.e. the subspace of 
scattering wavefunctions may be decomposed further into two orthogonal Hilbert 
spaces; we write Xac(H)  = %zc ( H )  0 X i c ( H ) ) .  This is very important, because now we 
can interpret the two parts separately. 

(I) The wavepacket $+ E Xzc ( H )  describes an electron with positive energy moving 
in the external potential V. 

(11) The wavepacket 4- E Xic  ( H )  describes a positron with positive energy moving 
in the same external potential V. 
The identification of positive energy states as electrons is obvious, but (11) needs further 
justification. 

(a) Note that (11) is in accordance with the Stuckelberg-Feynman interpretation, 
where the scattering states 4- are treated as electrons travelling backwards in time. In 
the formalism they appear as electrons with negative energies, but experimentally they 
are observed as positrons with positive energies (Stuckelberg 1942, Feynman 1949). 

(b) 4- is a solution of (2.1) and not of the positron Dirac equation (withH(-e)), but 
we can construct positron wavefunctions via charge conjugation: ( %I/-)(x, t )  
:= iy (cl-(x, t )  is a solution of the positron equation (e + -e, but same external potential 
V) with positive energy, whenever +-(x, t )  is a ,solution of the electron equation (2.1) 
with negative energy. If we interpret 1$*(x, t)I2 = Xfr l  I$? (x, t)I2 as position probability 
density, our definition (11) will be justified by 

2- 

I(%$-)(x, t)12 = l4-(x, t)I2. (2.3) 

The motion of a negative energy wavepacket is observed as the motion of a positron 
with positive energy. 

For bound states the sign of the energy EEI+,(H) does not distinguish between 
electron and positron wavefunctions (a square well, repulsive or attractive, may have 
eigenvalues with both signs in [-m, +m]).  So we use a more refined definition to 
separate bound states into electron and positron parts:. 

(111) A bound state with energy E E a,(H) is called an electron (positron) bound 
state if the eigenvalue decreases (increases) with increasing coupling strength /gl. 
Position probabilities are defined as in (I) and (11). 
Here we have used the monotony of the eigenvalues. This is indeed a decomposition of 
the subspace of bound states into two orthogonal parts. Usually, electron and positron 
bound states will have different energies and are therefore orthogonal, but for a certain 
value of g the energies may be equal (if an increasing positron-eigenvalue crosses a 
decreasing electron-eigenvalue; because of the strict monotony this is only possible for 
discrete values of g). Then the continuity with respect to g is sufficient to prove 
orthogonality for all g. 

The definitions (I), (11) and (111) may be summarised as follows: if all the conditions 
on the external potential V are fulfilled, it is possible to decompose the total Hilbert 
space 2?2(R3)4 into two orthogonal parts, namely into an electron and a positron Hilbert 
space: 

2?2(R3)4 = X + ( H )  0 %-(El). (2.4) 

(Each may be decomposed further into a subspace of scattering states and a subspace of 

+ This definition also holds for bound states in scalar potentials (cf Dosch et a1 1971) and Landau levels in 
magnetic fields (Sokolov and Ternov 1968). 
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bound states: X * ( H )  = $Yt(H)@X:c(H),)  We write P*(H)  for the orthogonal pro- 
jectors on X*(H) .  For H = Ho, the free Hamiltonian, we simply have 

P*(Ho) P: = B(*HO) = 31 *Ho/lHol), lHol = ( - - P + W Z ~ ) ” ~ .  
(2.5) 

Equation (2.4) implies an analogous decomposition of wavefunctions: $ = $‘+I,-, 
$* = P*(H)$ E X*(H) .  Having interpreted i$*(x, t)I2 as position probability densities, 
the conserved current is consequently defined by 

for electrons, 

for positrons. 

In a one-particle theory one would have j ”  = e$*yoy”$, with $ = a$++ b$-. Here we 
want to exclude such expressions by introducing a superselection rule (cf for example 
Streater and Wightman (1964, ch 1.1)). One has never observed particles being a 
superposition of electrons and positrons. We therefore demand that only the states 
belonging to one of the ‘coherent subspaces’ X * ( H )  represent physical states. This 
charge superselection rule is only meaningful as long as time evolution leaves $Y*(H) 
invariant. Then the initial state $+E X + ( H )  ($I-€ X - ( H ) )  will remain an electron 
(positron) state for all times. This condition is fulfilled by our time-independent 
Hamiltonian of § 2.1. So it depends only on the initial conditions, whether we describe 
an electron or a positron. (The Klein paradox represents a completely different 
situation, cf § 3.) 

2.3. Electron and positron observables 

We still need a rule for obtaining values for measurable quantities (= expectation values 
of self-adjoint operators), i.e. we have to define the observables of the theory. Because 
of the superselection rule (0 2.2) not every self-adjoint operator A can be an observ- 
able; only operators leaving X * ( H )  invariant are admissible. One can obtain such 
operators by restricting A to $Y*(H) (cf Pryce 1948), but as can be seen from below, 
only an additional charge conjugation of the positron expectation values would yield 
reasonable results. Thus we redefine positron observables according to 

(%‘$-,A%’$-) = ($-, %‘*A*%’$-). (2.7) 

(* denotes the adjoint operator; we have %’* = %’-’ and for observables A *  = A. For the 
charge conjugation of expectation values see Messiah (1962, ch 20.6.1).) 

(IV) Let A ( e )  be self-adjoint in 92(R3)4. An electron observable is represented by 
the self-adjoint operator 

A’ := P+A(e)P+,  

a positron observable by 

A- := P-%’-’A(-e)%’P-, 

Consider as a first example the energy (%‘-‘H(-e)%‘ = - H ( e ) )  

H+$+ = H(e)$+,  

H-$-  = -H(e)$- .  

H +  = P+H(e)P+,  

H -  = P-%’-’H(-e)%’P-, 
(2.8) 

Particles in a scattering state always have positive energies. The bound states in 
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potentials which are repulsive for electrons are of course positron bound states. The 
Dirac equation with the 'repulsive' potential +Ze/r has eigenvalues at -E,, but the 
actually observed positron energies are +E,. 

By definition, electron observables always commute with positron observables. A' 
and A -  may have properties completely different from those of A.  For example one 
generally has [A+, B'] # [A,  B]P' unless A and B commute with P+. Note further that 
the definition of observables depends on the interaction. 

Now we turn to the free-particle observables. The generators of the PoincarC group 
are represented by ten self-adjoint operators in Z2(1W3, d 3 ~ ) 4 ,  namely 

P := -iV, H~ := yOy P+ y'm, 

J := x x P + S ,  K := i(XH0 + HOX) - tP. 

With Xi = 'multiplication by xi'  and 

si := $&ijk[yj, Yk] $ & i j k u  ik  

(2.9) 

(2.10) 

we obtain a realisation of the well known PoincarC algebra. Both X and S do not leave 
invariant X*(Ho) = X:, but, if G is a PoincarC generator, then 

[G, H o I I H o I I  = 0. (2.11) 

Xi are therefore invariant with respect to PoincarC transformations; electrons and 
positrons are characterised in an invariant manner. G' is also a representation of the 
PoincarC algebra, and G- is a representation with complex conjugate structure 
constants, because % is antilinear and %-'GW = -G for all G. In the following we give 
the most important formal properties of the electron and positron observables. 
Momentum: 

P'+* = TiV+*. (2.12) 

Energy: From HO = IHo/P,f - IHolPO and %-'Ho% = -Ho we obtain 

H~+*=[(P*)2+m2]1'2q+*=(-A+m2)"2+*. 

Position and velocity: (VIX% = X )  

x++* = [ X  (i/2I~ol)(yOy -p /~o)I+*.  

(2.13) 

(2.14) 

X *  is invariant with respect to the Wigner time reversal, and fulfils canonical com- 
mutation relations 

[ x f ,  ~ f ]  = *isii (2.15) 

and rotates as a vector 

[Xf, Jf ] = r i&ijkX;;'. (2.16) 

Its commutator with H i  yields for the velocity 

dX*/dt = ki[Hg, X'] = P*/IHo/ (2.17) 

i.e. the observed velocity always points in the direction of the observed momentum. As 
expected, there is no term describing 'Zitterbewegung'. X' is nonlocal in the sense that 
its components do not commute: 

(2.18) [xf, xf ] = - ( i / 2 1 ~ ~ l ~ ) ~ ; u ~ ~ ~ z  
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with uij defined by (2.10). Thus, considering the Dirac equation in its standard 
representation, we are led to a position operator with the unfamiliar property (2.18). 
Starting within the Foldy-Wouthuysen representation (which is only known for free 
particles; Foldy and Wouthuysen (1950)), one is led to the Newton-Wigner operator by 
similar considerations (Newton and Wigner 1949). This operator satisfies properties 
analogous to (2.15)-(2.17) but has commuting components. Accepting the Newton- 
Wigner operator as a position operator, it would not be possible to interpret 1$*(x)I2. 
But the mean position according to X' is simply 

($*, X*+*)  = X I $ * ( X ) ~ ~  d3x (2.19) 

so that I$*(x)12 may be interpreted as a position probability density. Both the 
Newton-Wigner operator and X *  are not parts of a four-vector. (Within Dirac's theory 
time is treated as a parameter and not as a variable like x. It is only possible to obtain 
position four-vectors within proper-time theories, cf Horwitz and Lavie (1980).) 
Angular momentum: 

Orbital and spin angular momentum are conserved separately (because of Zitter- 
bewegung this is not the case for the operators L and S ) .  

We conclude with some remarks on the representations of symmetry trans- 
formations within the coherent subspaces %'*. The commutation relation (2.15) 
requires for the representation of finite translations 

[exp(-ia P + ) $ + ] ( x )  = ++(x -a ) for electrons, 

[exp(+ia P-)+-] (x)  = +-(x - a )  for positrons. 
(2.21) 

This is indeed very reasonable. Consider a unitary operator U leming %'* invariant 
(e.g. finite PoincarC transformations). The measurable quantities concerned with U are 
transition probabilities. As was the case for expectation values of observables, one 
should perform a charge conjugation with the probabilities for transitions between 
negative energy states in order to obtain observable values for positrons: 

I(%$-, U(-e)%qo-)l2 = I($-, W' U(-e)%p-)i2. (2.22) 

So, the symmetry transformation under consideration has to be represented by U(e)P' 
for electrons, and by %-'U(-e)%'P- for positrons. This would lead to observable 
transition probabilities. Because of 

w-' exp(-ia P)%P, = exp(+ia * P-)PO 

this is in agreement with (2.21). 
The interpretation presented here is not a one-particle theory, because we need 

electrons and positrons to interpret all 3'2(R3)4 solutions (however, within %'+(-I the 
theory behaves perfectly as a one-particle theory of electrons (positrons)). It is also not 
identical with hole theory, where the positrons are 'holes' in the sea of negative energy 
solutions, because we use the negative energy solutions themselves to describe posi- 
trons. We need no quantum field formalism to establish a connection between negative 



3074 B Thaller 

energy states and positrons. Our interpretation is in fact a slightly generalised version 
(to include bound states with both signs of energy) of the Stuckelberg-Feynman theory. 
Its relation to the interpretation of positrons as ‘electrons propagating backwards in 
time’ will become clear in § 4. 

It is possible to generalise our interpretation to potentials which do not fulfil (2.2) as 
long as there remains a gap in the spectrum of scattering energies which permits a 
separation into electron and positron states. In § 3 we consider a problem where this 
condition is not fulfilled. 

3. Klein paradox 

In 0 2 we have specified a class of potentials for which the electron-positron inter- 
pretation may be applied. More general potentials would lead to a phenomenon usually 
called Klein’s paradox. It is the purpose of this section to give a formulation of the 
problem on the basis of our ‘two-particle interpretation’. It is not possible to solve this 
paradox within the (first quantised) Dirac theory, but our viewpoint is different from the 
usual one and leads to the consideration of new solutions (cf (3.18), (3.19)). 

The best known example of Klein’s paradox is a one-dimensional potential step 
higher than twice the rest mass of the particle: 

x > a ,  

V ( x )  = e @ ( x )  = monotone, - U S X S + U  ( u z - 0 ,  V o > m ) ,  (3.1) \:io, x < - U ,  

(our choice of a ‘symmetric step’ will stress the symmetry between electron and positron 
states). Solutions for Vo < m may be found for example in Bongaarts and Ruijsenaars 
(1977); potential wells ( V ( x )  vanishes as 1x1 +CO) are considered in Dosch et a1 (1971). 
Some recent investigations using field theory indicate pair creation, cf Rafelski (1977), 
Aoyama and Kobayashi (1980), Hansen and Ravndal (1980). 

The conditions (2.2) are not fulfilled by (3.1), because V does not vanish at infinity. 
Instead we have r ( H )  = a,,(H) = (-00, +CO). The superselection rule of § 2.2 makes no 
sense: one cannot define the ‘coherent subspaces’ %?*(I$), because there is no gap in the 
spectrum of scattering energies. A separation of electron and positron states will only 
be possible in the asymptotic region 1x1 > a ,  and may be performed as follows. 

First note that a constant potential V ( x )  = Vo shifts the whole spectrum by Vo, but 
has no observable effect on the motion of particles (no force): 

a ( ~ ~ + ~ ~ ) = ( - c o , - m +  Vo]U[m+ V ~ , + C O ) ~ Z - ( H ~ + V ~ ) U Z + ( H ~ + V ~ ) .  (3.2) 

As in § 2, we interpret Z’ as the electron resp. positron part of the spectrum. The step 
potential (3.1) is constant in the asymptotic region and it is possible to decide whether a 
given asymptotic state represents an electron or a positron. Throughout this section we 
are interested in wavepackets with energies in the interval (m - Vo, -m + Vo), For 
x + +CO they always represent positrons, E E (-00, -m + VO] = Z-(HO + Vo), and for 
x + -00 electrons, E E [m - Vo, 00) = Z+(Ho - Vo). 

Now we turn to the solutions of the one-dimensional Dirac equation with constant 
potential: 
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For simplicity, we use a two-component form with 2 X 2 matrices a and p (we neglect 
spin effects since there is no spin-flip for step potentials, cf Bjorken and Drell(l964)): 

a = a * ,  P = p * ,  a = p  =1, ap +pa = 0, (3.4) 
2 2  

for example 

(3.5) 

The operators for charge conjugation and time reversal are now given by 

(%+)(x, t )  := a P + k  t ) ,  (Y+)(x, t )  := P + ( x ,  - t )*  (3.6) 

We further introduce eigenfunctions of the free Hami!tonian Ho: 

(3 .7)  

They form a complete orthonormal set and every electron resp. positron solution of 
(3.3) with constant potential V ( x )  = VO is a linear combination of 

f '*(x,  t )  = d E  r"(E)+b" (x, E - V,) e-iE', j = 1,2,  (3.8) 

with d E  lpi)(E)12 < CO, and E* given by ( 3 . 2 ) .  

be useful later. 
In the following we summarise some properties of the wavepackets (3.8) which will 

(1) With the normalisation of (3.7) the scalar product becomes 

( f ' + ,  g j - )  = 0.  
(3.9) 

( 2 )  f i + ,  j = I, 2, always represents an electron. f ' - ,  j = 1, 2, always represents a 

(3) The group velocity is given by (cf (2.17)) 
positron. 

j = 1 always represents a particle moving from left to right, j = 2 a particle moving from 
right to left. 

(4) Time reversal is an invariance transformation for all static potentials. We have 

(3.11) 

i.e. the direction of motion is reversed. 
Now we are prepared for a discussion of the electrostatic step-potential (3.1). The 

physical situation is not changed qualitatively, if we concentrate for simplicity on the 
rectangular step a = 0, which has the advantage that the problem can be solved exactly. 
The stationary solutions coincide with 4;' ( x ,  E &  Vo) in the region x k 0 and have to be 
continuous at x = 0. A solution for the rectangular step with VO> m and E E 

(Y+*)(X, t )  = f?'(x,  t )  
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( m  - Vo, -m + Vo) is given by 

(R(E) and T ( E )  are often called reflection and transmission coefficients, see below) and 
with the help df time reversal 9 (i.e. interchanging the indices (1) and (2)) we obtain 
immediately another solution 

+ I I k  E) = (Y+I)(X, E) .  (3.13) 

$I is the solution orginally given by Klein (1929); Bjorken and Drell investigated $11 for 
the first time. A review of the different interpretations of these solutions by various 
authors can be found in Bongaarts and Ruijsenaars (1976). Requiring continuity at 
x = 0, we obtain explicitly 

(3.14) 

and therefore R ( E ) ,  T ( E )  are real in our energy region. We always have R 2 ( E ) +  
T2(E)  = 1, which is reasonable for reflection and transmission coefficients. Wave- 
packets may be formed according to 

(3.15) 

The norm of these wavepackets is constant during the scattering process. Remember- 
ing that j = 1 resp. 2 corresponds to particles moving to the right resp. left, and that for 
the energy region under consideration the wavepackets in x < 0 are electrons, in x > 0 
positrons (cf the properties (1)-(4) of wavepackets), we conclude the following. For 
t+ --CO the wavepacket fI(x, t )  (formed with the help of (3.12)) describes an incoming 
electron, moving to the right. For t -+ +CO the wavepacket splits up into a reflected 
electron part and a transmitted positron part. f ~ ~ ( x ,  t )  = (TfI)(x, t )  describes the time 
reversed situation, i.e. incoming electron and positron (from the left resp. right) and 
outgoing electron wavepacket, moving to the left. Both solutions are paradoxical in the 
same respect: the total charge is not conserved in time. The incoming electron may be 
detected as an outgoing positron on the right, as t + +-CO. 

If we exchange the roles of electrons and positrons, we obtain two other solutions 
which do not conserve charge: E E (m - VO, -m + Vo), 

$I&, E) = ( ~ + I I I ) ( x ,  E ) .  (3.17) 

Continuity at x = 0 implies T(E) = T ( E ) ,  I? ( E )  = -R (E). Equation (3.16) describes a 
positron, coming from the right and splitting up into a positron and electron part; 
equation (3.17) is the time reversed process. 

We can use the four ‘basic’ solutions + I - $ ~ ~  (only two of them are linearly 
independent) to construct charge conserving solutions by linear combination. There 
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exist two orthogonal eigenfunctions with the required property, namely: 

and 

(3.19) 

with 

17 (E + VO) 
17@- VO). 

N := [2R (E)@ ( E )  + 1)]1'2, A := [(R ( E )  + 1)/2R (E)]"*, B := 

The corresponding wavepackets with energies in (m - Vo, -m + Vo) conserve total 
charge and consist of electron and positron parts being simultaneously totally reflected 
at the potential step. In the usual sense (i.e. that the step becomes transparent if it is 
higher than 2m; cf Klein (1929)) there is no Klein paradox at all! In our language the 
paradox consists in the existence of solutions violating charge conservation. Note that 
within this interpretation it is not possible to obtain physically reasonable solutions 
corresponding to the situation where electrons alone were sent towards the step. The 
only charge conserving solutions describe electrons coming in from the left and 
positrons coming in from the right. With our normalisation constant N equation (3.18) 
yields wavepackets with charge e,  equation (3.19) with -e. Note that the electron and 
positron parts cannot be treated independently. 

Finally, let us summarise the results of this section. The rectangular step is 
important for the following reasons: equation (2.1) can be solved exactly and it shows 
what kinds of difficulties arise, if the condition (2.2) on the invariance of the essential 
spectrum is relaxed. For Vo < m there are no difficulties because there still remains a 
gap between electron and positron states. For Vo> m this gap vanishes, transitions 
from electron to positron states occur and consequently there are solutions which do not 
conserve total charge. The invariance with respect to time reversal (if $I is a solution 
then 9 1 ~  = $11 is a solution) made it possible to find charge conserving solutions (e.g. 
+I + $11) in this case. Qualitatively, we then have the following situation. For Vo < m, 
total charge is always conserved. The solution with charge e in the energy interval 
I c (m - Vo, Vo) consists of an electron wavepacket being totally reflected at the 
barrier, and (at the moment of scattering) an exponentially decreasing tail in the region 
x > O .  Here we have the complete analogue to corresponding solutions of the 
Schrodinger equation. (For solutions in other energy regions cf Bongaarts and Ruij- 
senaars (1977).) Increasing Vo beyond m and keeping I fixed, the exponential tail 
becomes smaller and smaller. To conserve total charge, we have to form a positron 
wavepacket in x > 0. For sufficiently large Vo > m, the interval I lies in (m - Vo, -m + 
Vo). Then the electron wavepacket is still totally reflected, but there is no exponentially 
decreasing part in x > 0. Instead, we have a propagating positron, which is simul- 
taneously totally reflected at the barrier. If the total charge is required to be e as before, 
the norm of the electron wavepacket now has to be greater than it was for Vo < m, 
because it has to compensate for the norm of the positron part. Roughly speaking, if 
Vo > m, an additional electron-positron pair is necessary to obtain a solution with the 
same conserved charge. This, however, is not the description of a creation process. For 
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Vo > m the additional pair has been there for all times, so we have only another static 
situation. 

For time-dependent potentials the situation becomes even worse. If we consider a 
potential step increasing with time, then the unitarity of time evolution prevents any 
increase in the norm. Furthermore, there is no time reversal invariance that helps to 
construct charge conserving solutions. The general situation for time-dependent 
potentials, allowing a separation of asymptotic states into electron and positron 
solutions, is the following. The sum of the norms ll$+(t)112 + li$-(c)l12 remains constant, 
but not their difference e ( ~ ~ $ + ( t ) ~ ~ 2 -  ~ ~ $ - ( t ) ~ ~ 2 ) ,  i.e. the total charge. 

4. Scattering theory 

Assume that the conditions of 8 2.1 are fulfilled, i.e. that we can separate the solutions 
with the help of orthogonal projections P*(H) into electron and positron solutions for 
all times. The time development of electrons and positrons is then given by the Dirac 
equation ((2.1) with g = e )  

exp(-iH(e)t) = exp(-iH+t)P" + exp(+iH-t)P- 

(exp(+iH-t)P- is the positron time evolution according to (2.21)). If one formally 
applies (2 .7)  to obtain the positron time evolution, one obtains 

[exp(-- i~(e) t ) ] -  = P-%-' exp(+iH(-e)t)%P- = exp(-iH-t)P- 

This is a formal contradiction. Obviously (2 .7)  can only be applied to yield the correct 
positron operators (not only observables, but also unitary transformations) if it is 
somehow possible to transfer the wrong sign to the time parameter, i.e. to reinterpret 
the solutions I,!- E K .  Feynman interpreted the negative energy solutions as electrons 
propagating backwards in time, thereby adopting,the viewpoint of proper-time theories 
for the Dirac equation. We pick up this idea by using the 'Feynman operators' (4.1) 
instead of the unitary groups exp(-iHl) and exp(-iHot) to describe the time evolution: 

(4.1) 
s*(t) := e ( t )  exp(-iHt)P'- e( - t )  exp(-iHt)PF, 

$ ( t )  := ~ ( t )  exp(-iHot)Pi - e(- t )  exp(-iHot)Pz, 

with orthogonal projectors P* on %*(H) and P; on %*(Ho) = Ye," (cf (2.5)). Note that 
the integral kernel of is;  ( t  - t ' ) y o  in configuration space is just the Feynman propagator 
S F ( X  -x') (notation of Bjorken and Drell (1964)), which is a fundamental solution of 

(4.2) 

A solution of the Dirac equation for t l  < t < t2 is for example given by S'(t - t ' )$(t ') ,  if 
an initial condition for ( P f $ ) ( t ' )  at t' = tl and a final condition for (P-$)(c ' )  at t' = t2 are 
imposed. A sharp distinction between electrons and positrons is made, taking into 
account that negative energy states are considered as electrons moving backwards in 
time. With the Feynman operators we obtain a description close to so-called proper- 
time theories (cf Horwitz and Lavie (1980)). 

Next we show that we obtain a rigorous formulation of Feynman's approach to 
relativistic potential scattering by the following simple statement. Take the Feynman 
operators instead of the unitary groups exp(-iHt) and exp(-iHot) when defining 
asymptotic states. 

(2.1): 
(i-yoa/at- -yOHo)S,(x -x') = (i-y"a, - m)SF(x -x') = iS'(x -x'). 
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Definition. Let $'"(t) and $""'(t) be solutions of the free Dirac equation and $ ( t )  a 
solution of (2.1). Gin resp. $Out are called asymptotic states for 4 :  t) 

(4.3) f + T X  lim \lS-(t)$ - s i  (t)qP"I = o 
resp. 

Incoming electrons and outgoing positrons are now called in-asymptotes, incoming 
positrons and outgoing electrons are called out-asymptotes (i.e. the terms 'in' and 'out' 
are to be understood in the sense of proper time). Inserting definition (4,1), one can 
show by standard procedures that 

(4.5) &(t)  = fp$ '"( t )  = fi"ut$out(t) 

with 

and where 

are the Moller operators introdyced by Prosser (1963). Therefore the problem of 
existence and completeness of aut reduces to that of R'. A very powerful method of 
proving asymptotic completeness for non-relativistic scattering systems has been 
developed by Enss (1978, 1979) (an introductory survey is given in Enss (1980)). This 
method can also be applied to the Dirac equation, cf Simon (1979). Roughly speaking, 
it is only required that H = Ho + e V  be self-adjoint and each component of V falls off 
faster than 1/bl at infinity (conditions (2.2) are fulfilled in that case). Assuming 
asymptotic completeness for R', we obtain the following. The isometric operators a'" 
and Clout exist and 

R (0'") = R (0""') = X&?) Pac22(R3)4  (4.8) 

(the range of Rzt is the subspace of scattering states). The adjoint operators are given 
by 

(cl'")* = Pfo(R-)* + P,,(R+)*, 

(Rout)* = Po+ (a+)* +PO (a-)", 
with 

(a')* = s-lim eiHof e-iH'pac. 
t-*m 

All the Moller operators fulfil intertwining relations 

f ( m a  = .nf(Ho), f(Ho)R* = R*f (HI,  

(4.9) 

(4.10) 

(4.11) 

and, since OP; = RO(*Ho) = O(*H)R = P*fL (P' = P& = O(*H) on Ran(R) = 
Hac(H)) ,  we have 

S " ( t ) R  = as; ( t ) ,  s; ( t )R*  = R*S'(t). (4.12) 
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Writing the a ' s  as integrals of their derivatives, e.g. 

(a+)* = Pa, - ie J dt eiHorV e-iHrPac 

one can easily deduce the integral representations 

0 

+m 

(akt)*'= Pa, + ie dt  S,' ( - t ) y o y N A ,  e-iHrPa,. I_, 
The representation of (ai")* implies for any wavefunction $ ( t )  E Xac(H): 

(4.13) 

(4.14) 

( x  = ( t ,  x)). Since +(t )  - ($""')'(t) + ($in)-(t) and $ ( t )  -t,hin(t) - ($""')'(t) - 
t-tm r++m 

(~++~")+(t) ,  we see that 

lim j(P'($(t) - ~ ~ ~ ( t ) ) I l =  0. (4.15) 

The 'scattered wave' $ - gin consists only of negative energies in the distant past and 
only of positive energies in the distant future. These are just the Feynman constraints. 
A comparison of (4.14) and (4.15) with formulae (6.53)-(6.55) of Bjorken and Drell 
(1964) shows that we have obtained a rigorous formulation of the basic principles of 
Feynman's propagator formalism for potential scattering. 

We may now define the unitary scattering operator 

S := (no,t)*,in = $p; + $-'p, 

t+*m 

(4.16) 

where 

(4.17) 

is the unitary scattering operator of Prosser (1963). 
Equation (4.16) describes the scattering process in terms of electrons moving 

backwards or forwards in time. The operator providing us with a description in terms of 
electrons and positrons is given via (2 .7 )  by P:S(e)P," = $(e )P i  for electrons, and by 
P,%T'S*(-e)%P, = $(e)P; for positrons. s = $P: + i P i ,  the scattering operator of 
Prosser, yields the same result. It is in this sense that the two scattering formalisms are 
equivalent. Note, however, the 'physical' difference: S is a mapping from 'in' to 'out' 
(i.e. in the direction of proper time) and $ is a mapping from ' ( t  + -00)' to ' ( t  + +m)' (i.e. 
in the direction of ordinary time). S simulates the scattering operators of proper-time 
quantum mechanics (cf Horwitz and Lavie 1980). 

The quantity ( ( q 5 O U t ) + ,  S($'")-) should describe spontaneous pair creation (cf 
Bjorken and Drell 1964, figure 6.7): a particle with negative energy moving to the past 
is scattered to positive energies and travels back to the future. In the present case the 
intertwining relations (4.11) and (4.12) imply in the usual manner [ S ,  HO] = 0, i.e. 
conservation of energy during the scattering process. We find, that for static potentials 
there is no transition to states with different energy if the S operator exists and is 
unitary. So, if we initially have one electron (positron), we finally have one electron 
(positron), which is in accordance with the remarks at the end of 5 2 . 2 .  Consequently, 
the above matrix element is zero and there is no creation process. 
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Now we turn to more general situations. 
(1) Without modification our scattering formalism is not applicable to Coulomb 

forces: the S operator does not exist in that case. The reason for this is quite clear and is 
the same as in non-relativistic theories. The definition of s' via the Moller operators 
O(H, Ho) neglects the fact that Coulomb particles never become asymptotically free, 
because of the long range of the l / r  potential (this is also the reason for many 
divergencies, e.g. in Born expansions). Since the Coulomb potential satisfies the 
conditions of § 2 (2 < 137) the solutions may be separated into electrons and positrons 
and S may be obtained as in (4.16), if a Coulomb-modified s" is k n o w .  For the correct 
definition of s' for relativistic Coulomb scattering see Dollard and Vel0 (1966). 

(2) An additional constant potential Vo has no influence on the motion of particles. 
In the formalism one has only to replace the asymptotic evolution generated by Ho by 
the asymptotic evolution generated by Ho + VO. 

(3) Consider one-dimensional step potentials (3.1) with Vo < m. There remains still 
a gap in the spectrum of scattering energies, and the solutions may be separated into 
electrons and positrons. If the different spatial asymptotics to the right and to the left is 
taken into account for the definition of s' (cf Bongaarts and Ruijsenaars 1977, Davies 
and Simon 1978) then S may be defined with little modification as in (4.16). 

In examples (1)-(3) electron and positron states can be separated for all times. 
Quantum mechanical methods (like scattering theory) may be applied consistently for 
such potentials, and the different scattering formalisms of Feynman and Prosser are 
mathematically equivalent. From § 3 we know that for more general potentials our 
interpretation cannot be carried through in full generality, although it would often be 
possible to separate electron and positron states at least asymptotically. The Dirac 
equation may then have solutions violating the principle of charge conservation. In the 
following examples we sketch briefly how these facts are reflected by scattering theory. 

(4) Consider step potentials with Vo > m (cf 8 3). There is no gap between electron 
and positron states and (4.16) cannot be applied. Consider the solutions given in § 3. In 
our terminology the outgoing positron wavepackets moving to the right are in-states, 
incoming positrons are out-states. A short study of the various solutions shows that the 
total charge of in- and out-states is always the same (i.e. we have charge conservation in 
the sense of proper time), whereas they may have different norms (which is the case for 
$ I , ,  . . , We see that there is no unitary S operator (which would be norm 
conserving with respect to proper time), and the reason for this is the existence of 
solutions which do not conserve charge. On the other hand, the operator s" introduced 
by Bongaarts and Ruijsenaars (1977) is unitary, because it maps asymptotes for t + -a 
on asymptotes for t + +a and the norm conservation is guaranteed by the unitarity of 
time evolution. We therefore see that the Feynman scattering theory is very sensitive to 
situations which are 'not allowed'. 

( 5 )  Consider strongly time-dependent potentials V(t ) ,  for which our interpretation 
may be applied to the asymptotic states (e.g. potentials vanishing sufficiently for 
t + fa). If there are solutions which do not conserve total charge (cf the remarks at the 
end of § 3) ,  we see from the example above that no unitary S can be found, even if $may 
still be defined and is unitary. 

So we have obtained the following results. For a wide class of potentials the 
Feynman theory of potential scattering can be formulated rigorously. As long as S,  
defined by (4.16), exists and is unitary, there are no unphysical solutions of the Dirac 
equation. For more general situations (see items (4) and (5) above) the Dirac equation 
has solutions which do not conserve total charge. This cannot be seen from the 
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properties of 9, but is reflected by the fact that a unitary Feynman scattering-operator S 
does not exist. Pair creation is not described consistently by the Dirac equation within 
our interpretation, because the conservation of norm prevents any change in the 
number of particles. 

5. Conclusions 

We have shown that a consequent development of the Stuckelberg-Feynman theory 
into a probabilistic interpretation of the Dirac equation (with external fields satisfying 
the conditions of 8 2) corrects some prejudices concerning negative energy states, 
Zitterbewegung, and bound states in repulsive potentials, and yields the connection 
between propagator theory and ‘usual’ scattering theory. However, an application of 
our interpretation to more general potentials leads to difficulties, because the Cirac 
equation then has physically unrealistic solutions which do not conserve charge (which 
is clearly reflected by Feynman’s scattering theory). So, we have also obtained the limits 
of the Dirac equation, considered as a wave mechanical equation. The range of 
applicability of this theory is being left, whenever pair creation or annihilation actually 
happens. This cannot be described by the Dirac equation, because the norm (and not 
the charge) of wavepackets is always constant in time. The situation is completely 
different within proper-time quantum mechanics (Horwitz and Lavie (1980); a theory 
for particles with spin is given in Piron and Reuse (1978)), where the norm is conserved 
with respect to proper time, but may change with ordinary time (this has, of course, 
consequences for the description of the Klein paradox, cf Thaller (1981)). The coupled 
Maxwell-Dirac equations should be able to describe interactions between electron and 
positron states (as in QED); cf Glassey and Straufl (1979). It is then necessary to 
consider the behaviour of {$, A”} with the help of a formalism that conserves the total 
energy (and not the norm ll$ll of particles). (I$l( need not be constant, because the 
electromagnetic field A” may take over a part of the energy of the particles. We 
suppose that in such a framework it>hould be possible to describe pair creation and 
annihilation in terms of ordinary quantum mechanics (without using quantum field 
theory). 
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